Copied to
clipboard

?

G = C4222D14order 448 = 26·7

22nd semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4222D14, C14.1292+ (1+4), (C2×Q8)⋊10D14, (C4×C28)⋊29C22, D14⋊C46C22, C22⋊C421D14, C4.4D416D7, C23⋊D1425C2, C22⋊D2826C2, (C2×D4).112D14, C4.D2830C2, (C2×C28).83C23, (Q8×C14)⋊16C22, C28.23D424C2, (C2×C14).227C24, C72(C24⋊C22), (C4×Dic7)⋊37C22, (C2×D28).34C22, (C23×D7)⋊12C22, C23.D735C22, C2.77(D46D14), C2.53(D48D14), C23.49(C22×D7), Dic7.D443C2, (C2×Dic14)⋊10C22, (D4×C14).212C22, (C22×C14).57C23, (C22×D7).99C23, C22.248(C23×D7), (C2×Dic7).117C23, (C7×C4.4D4)⋊19C2, (C7×C22⋊C4)⋊32C22, (C2×C4).200(C22×D7), (C2×C7⋊D4).65C22, SmallGroup(448,1136)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4222D14
C1C7C14C2×C14C22×D7C23×D7C23⋊D14 — C4222D14
C7C2×C14 — C4222D14

Subgroups: 1676 in 260 conjugacy classes, 91 normal (17 characteristic)
C1, C2, C2 [×2], C2 [×6], C4 [×9], C22, C22 [×26], C7, C2×C4, C2×C4 [×4], C2×C4 [×4], D4 [×9], Q8 [×3], C23 [×2], C23 [×10], D7 [×4], C14, C14 [×2], C14 [×2], C42, C42 [×2], C22⋊C4 [×4], C22⋊C4 [×14], C2×D4, C2×D4 [×8], C2×Q8, C2×Q8 [×2], C24 [×2], Dic7 [×4], C28 [×5], D14 [×20], C2×C14, C2×C14 [×6], C22≀C2 [×6], C4.4D4, C4.4D4 [×8], Dic14 [×2], D28 [×4], C2×Dic7 [×4], C7⋊D4 [×4], C2×C28, C2×C28 [×4], C7×D4, C7×Q8, C22×D7 [×4], C22×D7 [×6], C22×C14 [×2], C24⋊C22, C4×Dic7 [×2], D14⋊C4 [×12], C23.D7 [×2], C4×C28, C7×C22⋊C4 [×4], C2×Dic14 [×2], C2×D28 [×4], C2×C7⋊D4 [×4], D4×C14, Q8×C14, C23×D7 [×2], C4.D28 [×2], C22⋊D28 [×4], Dic7.D4 [×4], C23⋊D14 [×2], C28.23D4 [×2], C7×C4.4D4, C4222D14

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D7, C24, D14 [×7], 2+ (1+4) [×3], C22×D7 [×7], C24⋊C22, C23×D7, D46D14, D48D14 [×2], C4222D14

Generators and relations
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=a-1, dad=ab2, cbc-1=a2b-1, dbd=a2b, dcd=c-1 >

Smallest permutation representation
On 112 points
Generators in S112
(1 8 74 81)(2 82 75 9)(3 10 76 83)(4 84 77 11)(5 12 78 71)(6 72 79 13)(7 14 80 73)(15 62 101 37)(16 38 102 63)(17 64 103 39)(18 40 104 65)(19 66 105 41)(20 42 106 67)(21 68 107 29)(22 30 108 69)(23 70 109 31)(24 32 110 57)(25 58 111 33)(26 34 112 59)(27 60 99 35)(28 36 100 61)(43 50 92 85)(44 86 93 51)(45 52 94 87)(46 88 95 53)(47 54 96 89)(48 90 97 55)(49 56 98 91)
(1 111 49 65)(2 41 50 26)(3 99 51 67)(4 29 52 28)(5 101 53 69)(6 31 54 16)(7 103 55 57)(8 33 56 18)(9 105 43 59)(10 35 44 20)(11 107 45 61)(12 37 46 22)(13 109 47 63)(14 39 48 24)(15 88 30 78)(17 90 32 80)(19 92 34 82)(21 94 36 84)(23 96 38 72)(25 98 40 74)(27 86 42 76)(58 91 104 81)(60 93 106 83)(62 95 108 71)(64 97 110 73)(66 85 112 75)(68 87 100 77)(70 89 102 79)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 64)(2 63)(3 62)(4 61)(5 60)(6 59)(7 58)(8 57)(9 70)(10 69)(11 68)(12 67)(13 66)(14 65)(15 93)(16 92)(17 91)(18 90)(19 89)(20 88)(21 87)(22 86)(23 85)(24 98)(25 97)(26 96)(27 95)(28 94)(29 84)(30 83)(31 82)(32 81)(33 80)(34 79)(35 78)(36 77)(37 76)(38 75)(39 74)(40 73)(41 72)(42 71)(43 102)(44 101)(45 100)(46 99)(47 112)(48 111)(49 110)(50 109)(51 108)(52 107)(53 106)(54 105)(55 104)(56 103)

G:=sub<Sym(112)| (1,8,74,81)(2,82,75,9)(3,10,76,83)(4,84,77,11)(5,12,78,71)(6,72,79,13)(7,14,80,73)(15,62,101,37)(16,38,102,63)(17,64,103,39)(18,40,104,65)(19,66,105,41)(20,42,106,67)(21,68,107,29)(22,30,108,69)(23,70,109,31)(24,32,110,57)(25,58,111,33)(26,34,112,59)(27,60,99,35)(28,36,100,61)(43,50,92,85)(44,86,93,51)(45,52,94,87)(46,88,95,53)(47,54,96,89)(48,90,97,55)(49,56,98,91), (1,111,49,65)(2,41,50,26)(3,99,51,67)(4,29,52,28)(5,101,53,69)(6,31,54,16)(7,103,55,57)(8,33,56,18)(9,105,43,59)(10,35,44,20)(11,107,45,61)(12,37,46,22)(13,109,47,63)(14,39,48,24)(15,88,30,78)(17,90,32,80)(19,92,34,82)(21,94,36,84)(23,96,38,72)(25,98,40,74)(27,86,42,76)(58,91,104,81)(60,93,106,83)(62,95,108,71)(64,97,110,73)(66,85,112,75)(68,87,100,77)(70,89,102,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,64)(2,63)(3,62)(4,61)(5,60)(6,59)(7,58)(8,57)(9,70)(10,69)(11,68)(12,67)(13,66)(14,65)(15,93)(16,92)(17,91)(18,90)(19,89)(20,88)(21,87)(22,86)(23,85)(24,98)(25,97)(26,96)(27,95)(28,94)(29,84)(30,83)(31,82)(32,81)(33,80)(34,79)(35,78)(36,77)(37,76)(38,75)(39,74)(40,73)(41,72)(42,71)(43,102)(44,101)(45,100)(46,99)(47,112)(48,111)(49,110)(50,109)(51,108)(52,107)(53,106)(54,105)(55,104)(56,103)>;

G:=Group( (1,8,74,81)(2,82,75,9)(3,10,76,83)(4,84,77,11)(5,12,78,71)(6,72,79,13)(7,14,80,73)(15,62,101,37)(16,38,102,63)(17,64,103,39)(18,40,104,65)(19,66,105,41)(20,42,106,67)(21,68,107,29)(22,30,108,69)(23,70,109,31)(24,32,110,57)(25,58,111,33)(26,34,112,59)(27,60,99,35)(28,36,100,61)(43,50,92,85)(44,86,93,51)(45,52,94,87)(46,88,95,53)(47,54,96,89)(48,90,97,55)(49,56,98,91), (1,111,49,65)(2,41,50,26)(3,99,51,67)(4,29,52,28)(5,101,53,69)(6,31,54,16)(7,103,55,57)(8,33,56,18)(9,105,43,59)(10,35,44,20)(11,107,45,61)(12,37,46,22)(13,109,47,63)(14,39,48,24)(15,88,30,78)(17,90,32,80)(19,92,34,82)(21,94,36,84)(23,96,38,72)(25,98,40,74)(27,86,42,76)(58,91,104,81)(60,93,106,83)(62,95,108,71)(64,97,110,73)(66,85,112,75)(68,87,100,77)(70,89,102,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,64)(2,63)(3,62)(4,61)(5,60)(6,59)(7,58)(8,57)(9,70)(10,69)(11,68)(12,67)(13,66)(14,65)(15,93)(16,92)(17,91)(18,90)(19,89)(20,88)(21,87)(22,86)(23,85)(24,98)(25,97)(26,96)(27,95)(28,94)(29,84)(30,83)(31,82)(32,81)(33,80)(34,79)(35,78)(36,77)(37,76)(38,75)(39,74)(40,73)(41,72)(42,71)(43,102)(44,101)(45,100)(46,99)(47,112)(48,111)(49,110)(50,109)(51,108)(52,107)(53,106)(54,105)(55,104)(56,103) );

G=PermutationGroup([(1,8,74,81),(2,82,75,9),(3,10,76,83),(4,84,77,11),(5,12,78,71),(6,72,79,13),(7,14,80,73),(15,62,101,37),(16,38,102,63),(17,64,103,39),(18,40,104,65),(19,66,105,41),(20,42,106,67),(21,68,107,29),(22,30,108,69),(23,70,109,31),(24,32,110,57),(25,58,111,33),(26,34,112,59),(27,60,99,35),(28,36,100,61),(43,50,92,85),(44,86,93,51),(45,52,94,87),(46,88,95,53),(47,54,96,89),(48,90,97,55),(49,56,98,91)], [(1,111,49,65),(2,41,50,26),(3,99,51,67),(4,29,52,28),(5,101,53,69),(6,31,54,16),(7,103,55,57),(8,33,56,18),(9,105,43,59),(10,35,44,20),(11,107,45,61),(12,37,46,22),(13,109,47,63),(14,39,48,24),(15,88,30,78),(17,90,32,80),(19,92,34,82),(21,94,36,84),(23,96,38,72),(25,98,40,74),(27,86,42,76),(58,91,104,81),(60,93,106,83),(62,95,108,71),(64,97,110,73),(66,85,112,75),(68,87,100,77),(70,89,102,79)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,64),(2,63),(3,62),(4,61),(5,60),(6,59),(7,58),(8,57),(9,70),(10,69),(11,68),(12,67),(13,66),(14,65),(15,93),(16,92),(17,91),(18,90),(19,89),(20,88),(21,87),(22,86),(23,85),(24,98),(25,97),(26,96),(27,95),(28,94),(29,84),(30,83),(31,82),(32,81),(33,80),(34,79),(35,78),(36,77),(37,76),(38,75),(39,74),(40,73),(41,72),(42,71),(43,102),(44,101),(45,100),(46,99),(47,112),(48,111),(49,110),(50,109),(51,108),(52,107),(53,106),(54,105),(55,104),(56,103)])

Matrix representation G ⊆ GL8(𝔽29)

109100000
0121260000
22252800000
9210280000
000041400
000012500
0000117414
00002128125
,
275000000
282000000
00850000
0016210000
000006270
00002119027
00002028023
00001112810
,
21412240000
518180000
000250000
002270000
0000152100
000016300
0000227148
000022211326
,
24715160000
9512170000
0025260000
00540000
00001417518
000094024
0000422014
00001522911

G:=sub<GL(8,GF(29))| [1,0,22,9,0,0,0,0,0,1,25,21,0,0,0,0,9,21,28,0,0,0,0,0,10,26,0,28,0,0,0,0,0,0,0,0,4,1,1,21,0,0,0,0,14,25,17,28,0,0,0,0,0,0,4,1,0,0,0,0,0,0,14,25],[27,28,0,0,0,0,0,0,5,2,0,0,0,0,0,0,0,0,8,16,0,0,0,0,0,0,5,21,0,0,0,0,0,0,0,0,0,21,20,11,0,0,0,0,6,19,28,12,0,0,0,0,27,0,0,8,0,0,0,0,0,27,23,10],[21,5,0,0,0,0,0,0,4,1,0,0,0,0,0,0,12,8,0,22,0,0,0,0,24,18,25,7,0,0,0,0,0,0,0,0,15,16,22,22,0,0,0,0,21,3,7,21,0,0,0,0,0,0,14,13,0,0,0,0,0,0,8,26],[24,9,0,0,0,0,0,0,7,5,0,0,0,0,0,0,15,12,25,5,0,0,0,0,16,17,26,4,0,0,0,0,0,0,0,0,14,9,4,15,0,0,0,0,17,4,22,22,0,0,0,0,5,0,0,9,0,0,0,0,18,24,14,11] >;

61 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A···4E4F4G4H4I7A7B7C14A···14I14J···14O28A···28R28S···28X
order12222222224···4444477714···1414···1428···2828···28
size111144282828284···4282828282222···28···84···48···8

61 irreducible representations

dim111111122222444
type++++++++++++++
imageC1C2C2C2C2C2C2D7D14D14D14D142+ (1+4)D46D14D48D14
kernelC4222D14C4.D28C22⋊D28Dic7.D4C23⋊D14C28.23D4C7×C4.4D4C4.4D4C42C22⋊C4C2×D4C2×Q8C14C2C2
# reps12442213312333612

In GAP, Magma, Sage, TeX

C_4^2\rtimes_{22}D_{14}
% in TeX

G:=Group("C4^2:22D14");
// GroupNames label

G:=SmallGroup(448,1136);
// by ID

G=gap.SmallGroup(448,1136);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,758,219,1571,570,297,192,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=a^-1,d*a*d=a*b^2,c*b*c^-1=a^2*b^-1,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽